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Abstract

In this study, we analyze the relationship between the price of carbon-intensive fuel and the

stock prices of renewable energy companies, incorporating the price of carbon in the European

Union emission trading system (EU ETS). Specifically, we employ wavelet methods to reconstruct

time series with specific levels of persistence, reducing noise, trend, and seasonal components.

Using these wavelet-adjusted series, we conduct a regression analysis that considers exogenous

factors that may influence the demand for electricity and emission allowances. Subsequently, we

estimate vector autoregressive models and obtain a connectedness measure and impulse response

functions. The results consistently imply that increases in coal prices have (counterintuitively) a

negative effect on renewable energy stock prices. Moreover, we show that this can be explained

by a negative relationship between coal and carbon prices and a positive relationship between

carbon prices and renewable energy stock prices. Our study contributes to the literature by

uncovering the negative relationship between the price of carbon-intensive fuel and renewable

energy stock prices by applying a suitable filtering procedure.
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1 Introduction

Developing renewable energy sources (RES) has emerged as the primary way to address concerns

regarding climate change, cope with the depletion of fossil fuel resources, and establish a sustainable

global energy system. A wide range of policies have been implemented to promote development

in the renewable energy sector; however, renewable energy firms must be profitable to attract

investment and maximize the effect of renewable energy policies. Emission trading sheds light

on this by encouraging the environmental efficiency of RES (Anke and Möst, 2021; Jaraitė and

Di Maria, 2012). The European emission trading system (EU ETS), part of the EU’s policies

to combat climate change, is a market-based mechanism designed to help achieve greenhouse gas

emissions reduction targets. Under this cap-and-trade system, companies are required to buy

emission allowances (EUAs) in an amount corresponding to their annual carbon emissions. A

binding emission cap provides a significant price signal for the value of carbon abatement, especially

for the electric power sector, which accounts for a significant part of total EU carbon emissions and

therefore plays a prominent role in emission trading. To meet emission targets or to reduce the

cost of relying on carbon-based fuels, the options available to power generators are fuel switching in

the short run and/or investment in renewable energy technologies in the long run (Bruninx et al.,

2020; Delarue and Van den Bergh, 2016; Chen and Tseng, 2008). Improvements in the economic

feasibility of RES based on carbon pricing not only provide an effective method to reach emission

reduction targets but also increase the profitability of renewable energy firms.

Higher fossil fuel prices are often seen as an incentive for the power sector to use RES (Kumar

et al., 2012; Apergis and Payne, 2014). However, emission trading schemes obscure the logical

relationships between carbon-intensive fuel and renewable energy stock prices. For example, when

carbon-intensive fuel prices increase, there is an incentive for power plants to use low carbon

fuel rather than carbon-intensive fuel, which reduces the demand for emission allowance, placing

downward pressure on allowance prices (Aatola et al., 2013; Batten et al., 2021; Weigt et al., 2013).
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The profits of renewable energy companies, which remain low, are closely related to allowance prices

(Guo et al., 2020). Therefore, higher prices for carbon-intensive fuel have both a positive influence

(owing to renewable energy penetration) and a negative influence (owing to decreased demand for

allowances) on renewable energy stock prices. Thus, analyzing the relationship between carbon-

intensive fuel prices and renewable energy stock prices allows for a richer understanding of how

carbon pricing affects the expansion of RES.

In this study, we investigate the dependent relationship between a renewable energy index and

the price of coal, the most carbon-intensive fuel, by considering the price of carbon. Focusing on

the EU ETS Phase III, our empirical study uses European data for the period from January 2013

to December 2019. As a representative index of the European renewable energy sector, we consider

the European renewable energy index (ERIX). For the price of carbon, we use the EUA futures

price, which has been actively traded since the start of the EU ETS. Using a continuous wavelet

transform, we first obtain information about dynamic correlations and lead-lag relationships across

different time scales. The wavelet coherence and phase relationships indicate that the prices of coal

and carbon are negatively correlated, the price of carbon and ERIX are positively correlated, and

the price of coal and ERIX are negatively correlated at some time scales. In particular, we find

significant wavelet power spectrums and wavelet coherences at the intermediate and long-term time

scales. To reduce noise, trend, and seasonal components and reconstruct time series with specific

time scales of interest, we apply a discrete wavelet transform and obtain denoised and detrended

series, namely wavelet-adjusted series. Using these wavelet-adjusted series, we perform regression

and vector autoregressive (VAR) analyses to examine the causality and direction of influence.

In our regression analyses, we estimate ordinary least squares (OLS) and as well as cointegrating

regressions for robustness. To consider exogenous factors that may influence the demand for

electricity and allowances, we construct a set of control variables including the prices of electricity,

crude oil, a stock market index, a risk-free rate, average temperatures, and dummy variables

representing extreme temperature and policy changes (Alberola et al., 2008; Alberola and Chevallier,

2009; Fan et al., 2017). The regression results imply that the coal price has a negative effect on
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the carbon price, the carbon price has a positive effect on the ERIX, and the coal price has

a negative effect on the ERIX. These results are statistically and economically significant, and

robust to controls for exogenous shocks. Utilizing estimates from our VAR analyses we obtain the

connectedness measure from Diebold and Yilmaz (2009, 2012, 2014, herinafter DY) and impulse

response functions. In a VAR system consisting of prices for coal, carbon, and ERIX, the net

directional connectedness indicates that coal prices are a net transmitter of spillover while the

carbon price and ERIX are net receivers. Finally, from the impulse response functions we find that

the carbon price responds negatively to coal price shocks, ERIX responds positively to carbon price

shocks, and finally, ERIX responds negatively to coal price shocks. In addition, we calculate the

dark spread (i.e., the profit a coal-fired power plant generates from selling a unit of electricity) to

capture the influence of coal price variations on power generation (Batten et al., 2021; Keppler and

Mansanet-Bataller, 2010). Our findings are generally consistent even when the dark spread is used

instead of the coal price.

This study contributes to the literature on the relationships among prices for fuel, carbon, and

renewable energy stocks as follows. Although previous studies present evidence on the relationship

between the EU ETS and the electric power sector, few consider how the ETS influences the way in

which renewable energy stock prices depend on the price of carbon-intensive fuel (see Section 2 for

further details). To fill this gap, we thoroughly investigate the relationships among the prices of coal

and carbon, and the renewable energy index. Specifically, using wavelets we provide solid evidence

of the negative relationship between ERIX and the price of carbon-intensive fuel. The analysis

based on wavelets provides a better understanding of the dynamic dependence across different time

scales (Hamdi et al., 2019; Jammazi and Aloui, 2010; Jiang and Yoon, 2020; Reboredo et al., 2017).

The wavelet analysis shows that the original time series contains various levels of persistence, and

based on wavelet decomposition we disentangle the components and reconstruct the time series.

Using the wavelet-adjusted series we unveil significant relationships that are not explicitly seen in

the original series and show that the results are robust across different specifications and estimation

methods.
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The remainder of the present study is presented as follows. In Section 2, existing studies on

the power sector, ETS, and renewable energy development are briefly reviewed. Section 3 and 4

present the methodology and data used in this study, respectively. In Section 5, we discuss our

empirical results. Finally, Section 6 concludes the study.

2 The power sector, emission trading system, and renewable energy

development

The EU ETS, the oldest and the largest carbon market in the world, covers more than half of total

carbon emissions produced in Europe. The electric power sector plays a prominent role in the EU

ETS; as of 2019, the sector accounts for approximately 62% of total emissions in the EU ETS and

its annual emission reduction is the largest across all sectors (Nissen et al., 2020). The electric

power sector is a major target of policymakers who want to reduce carbon emissions and increase

the use of RES because of the flexibility it offers in the choice of fuels. A significant number of

European power plants are multi-fired plants in which inter-fuel substitution can occur quickly and

easily (Söderholm, 2001). Each power plant determines the optimal fuel mix based on the profit

margin from those fuels. The dark spread, defined as the profit a coal-fired power plant earns from

selling a unit of electricity, is given by

Dark spread = PE −
Pc × ηc
Ec

, (1)

where PE and Pc are prices of electricity and coal, respectively; and ηc is a conversion factor;

and Ec is the plant’s efficiency of coal-fired generation. The spark spread is defined similarly

for a gas-fired power plant. The EU ETS participants must submit allowances in proportion to

their carbon emissions, which increases the cost of power generation, especially for high carbon

fuels.1 Taking carbon costs into consideration, dark and spark spreads must be corrected by the
1For coal-fired power generation, fuel costs account for 40% of total costs, and an allowance price of €20 increases

total costs by roughly 40%. In contrast, an allowance price of €20 only increases the total cost of gas-fired power
generation by 20% (Graus and Worrell, 2009).
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allowance price; these are referred to as “clean” dark and spark spreads (see Abadie and Chamorro

(2008) for more details). To meet emission targets or to cope with an increase in carbon or fuel

prices, the short-term option available for power generation is fuel switching, namely, the use of low

carbon fuels rather than a carbon-intensive fuel, while investing in clean energy technologies can

be a longer-term solution. Carbon pricing under the EU ETS encourages the phase-out of fossil

fuels and investment in low-carbon technologies that are capable of increasing renewable energy

penetration (Cullen and Mansur, 2017; Fell and Linn, 2013; Rogge and Hoffmann, 2010). Anke and

Möst (2021) examine the effect of the EU ETS on the growth of RES and show that higher carbon

prices and coal phase-outs increase power prices as well as the economic feasibility of RES. Jaraitė

and Di Maria (2012) measure environmental efficiency and show that the emission trading system

increases environmental efficiency and encourages the technological development of RES but that

an oversupply of EUA negatively affects the benefits of the policy.

The entire supply of EUA depends on the overall emissions reduction target set by the European

Commission, and an individual firm’s supply is determined by allocations of the total cap to

each firm. However, changes in external circumstances including fuel price, weather events, and

economic conditions influence electricity production and energy needs, thereby affecting demand

for allowances. Owing to inflexible supplies and the full auctioning applied to the electricity sector,

carbon prices become more sensitive to demand-side factors. The seminal study by Alberola et al.

(2008) examines price drivers and structural breaks in EUA prices during Phase I. Using OLS, these

authors find the primary drivers of carbon prices to be energy prices and unexpected temperature

changes. They also identify two structural changes related to the disclosure of verified emissions

(in April 2006) and the announcement of the allocation plan (in October 2006). Chevallier (2009)

finds that carbon futures prices are influenced by power plants’ fuel-switching behavior rather than

the macroeconomic environment. Creti et al. (2012) find that oil prices, an equity index, and the

switching price (the difference between clean dark and spark spreads) are key components of EUA

prices during Phase II. Numerous studies identify various key components including energy prices,

macroeconomic conditions, and weather events (see Benz and Trück, 2009; Bunn and Fezzi, 2007;
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Mansanet-Bataller et al., 2007; Christiansen et al., 2005; Hintermann, 2010; Peri and Baldi, 2011;

Lutz et al., 2013).

When a stringent emission cap is in place, the EUA supply is unresponsive to various exogenous

factors such as renewable energy promotions. In particular, renewable energy policies have little

impact on further emission reduction because they simply displace carbon emissions from the

electricity power sector to other sectors within the ETS (Delarue and Van den Bergh, 2016; Sijm,

2005; Van den Bergh et al., 2013). De Perthuis and Trotignon (2014) point out weaknesses in the

EU ETS and argue the necessity of dynamic supply management. They identify three causes of

EUA price declines over the period from 2008 to 2013: an oversupply of allowances, overlapping

regulations (e.g., renewable energy policies), and a demand shock caused by the global financial

crisis. In the EU ETS, low EUA prices resulting from inflexible emission caps have triggered

discussions about a policy supplement. For example, Richstein et al. (2015) argue that the carbon

price can be decoupled from renewable energy policy by adjusting the emission cap according to

renewable energy policies. Schäfer (2019) develops a unilateral flexible cap based on emission

intensity that eliminates demand-side effects such as overlapping regulations. He shows that the

combination of an intensity-based cap and an absolute cap is advantageous in the German power

sector. To adjust the EU ETS, the European Commission increased the linear reduction factor

and introduced a market stability reserve (MSR) that allows allowances to be cancelled.2 However,

Bruninx et al. (2019) demonstrate that the current MSR would suffer from problems of overlapping

regulations and could even increase the uncertainty of cumulative emissions. Bruninx et al. (2020)

examine the impact of the MSR on EUA and electricity prices, focusing on short-term fuel switching

and long-term investment in power plants. Based on a sensitivity analysis, they demonstrate that

the effect of the MSR is highly dependent on other energy policies, including coal phase-outs and

renewable energy promotion.

Changes in regulations or policies greatly affect both supply and demand for EUAs. For

example, the disclosure of verified emissions and a subsequent announcement regarding the allocation
2During 2014 to 2016, the allocation and auctioning of 800 million EUAs was postponed (backloading) but failed

to prevent price drops. The MSR absorbs part of the excess EUAs.
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plan induced structural breaks in the EUA prices (Alberola et al., 2008; Benz and Trück, 2009;

Chevallier et al., 2009; Conrad et al., 2012; Hitzemann et al., 2010; Lepone et al., 2011; Mansanet-

Bataller and Pardo, 2009). Alberola and Chevallier (2009) show that the low EUA prices during

Phase I can be explained not only by oversupply but also by banking restrictions in place between

Phase I and Phase II. The impact of policy adjustments on EUA prices is well organized in Fan

et al. (2017). The aforementioned authors categorize 50 events into six categories and measure the

abnormal returns of EUA spot and futures prices around the dates of the events. They conclude that

newly announced events related to the supply and demand of allowance (e.g., caps, free allocations,

and auction events) tended to have a significant influence on the return.

Fundamentally, an increase in fossil fuel prices or coal-phase out increases the economic feasibility,

and thereby encourages the expansion of RES (Anke and Möst, 2021; Jaraitė and Di Maria, 2012).

In an early study, Kumar et al. (2012) examine the relationship among oil, carbon, and clean energy

stock prices during EU ETS Phase I using a VAR framework and conclude there is a positive

relationship between oil and clean energy stock prices because of energy substitution. Apergis and

Payne (2014) examine the drivers of renewable energy consumption in seven Central American

countries and find that long-run elasticity estimates between coal prices, oil prices, real GDP per

capita, and carbon emissions per capita are significant and positive. However, the existence of

emission allowance complicates the logical relationships between fuel prices and the economics of

RES because prices of carbon-intensive fuels and allowance prices are negatively correlated. If coal

prices increase (or the dark spread decreases), power generators would convert from using coal

to using natural gas in the short run, and would increase the use of RES in the long run.3 The

substitution from carbon-intensive fuel(s) to low- or zero-carbon fuel(s) decreases the demand for,

and therefore lowers the price of allowances. Keppler and Mansanet-Bataller (2010) show that coal

and natural gas prices affect EUA futures prices through dark and spark spreads, and that the

dark spread is positively correlated with EUA prices. Aatola et al. (2013) suggest an equilibrium

model to identify the price drivers of EUA, focusing on Germany’s electricity sector. Their model
3Pettersson et al. (2012) provide some evidence for the existence of price-induced fuel switching behavior between

coal and gas in the short-run based on a generalized Leontief model.
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implies that higher costs for a more-polluting input (e.g., coal) lead to greater use of a less-polluting

input (e.g., natural gas), resulting in a decrease in permit prices in the equilibrium. Their results

suggest the significant and negative effect of a coal price shock on EUA prices using a regression

and VAR analysis using data from 2005 to 2010. Weigt et al. (2013) estimate the effect of RES

deployment on the demand for EUA and show that the availability of RES significantly reduces

CO2 emissions, which decreases the demand for EUA. Batten et al. (2021) investigate the key

components of carbon prices, focusing on energy prices and weather conditions. They discover

that coal, gas, and electricity prices have significant relationships with EUA prices during Phase

III. In particular, a coal price shock has a negative impact on EUA prices because the coal price

increase causes fuel switching from coal to natural gas, which puts downward pressure on EUA

demand. Similarly, the price of natural gas and the dark spread are positively correlated with the

price of EUA. With respect to weather conditions, unanticipated temperature changes, rather than

the temperature level, impacts EUA prices.

Existing studies focus primarily on pairwise relationships among fuel, carbon, and renewable

energy markets. In this study, we investigate how changes in the price of carbon-intensive fuel (e.g.,

coal) influence the stock prices of renewable energy firms involved in the ETS. The renewable energy

stock prices represent the market’s expectation of future growth in the renewable energy sector.

Thus, without the ETS, coal and renewable energy stock prices would have a positive relationship

owing to renewable energy penetration. With the ETS, we must take into account the price of

carbon. The price of carbon and renewable energy stock prices are positively correlated because a

high carbon price not only encourages the development of renewable energy technologies, it directly

affects renewable energy firms’ profits because renewable energy subsidies and emission allowances

still account for a considerable portion of these firms’ revenue. Considering the negative effect of

high coal prices on carbon prices, we expect a negative correlation between the price of coal and

renewable energy stock prices. Between these two counteracting effects, we expect renewable energy

stock prices to react negatively to coal price shocks because the change in carbon prices due to

renewable energy penetration plays a more important role than the renewable energy penetration
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itself. This study contributes to the literature by analyzing coal, carbon, and renewable energy

stock markets together, discovering a negative relationship between coal and renewable energy stock

prices in the ETS.

It is noteworthy that these relationships characterize the dynamics of coal, carbon, and renewable

energy stock markets from a long-term perspective. Accounting for persistence heterogeneity, we

apply wavelet methodologies to analyze dynamic correlations and lead-lag relationships across

time scales, and to reduce noise, trends, and seasonal components and focus on specific levels of

persistence. Wavelet methodology is widely used in multiscale analysis and in denoising time series.

For example, econometricians apply wavelet methodology for beta decomposition and to study

multiscale systematic risk (Bandi and Tamoni, 2020; Boons and Tamoni, 2015; Gençay et al., 2003,

2005; Kang et al., 2017; Xyngis, 2017). They use wavelets for multiresolution factor analysis and

obtain scale-wise factor loadings. The seminal work of Ortu et al. (2013) decomposes consumption

growth and representative financial ratios by their level of persistence in the presence of persistence

heterogeneity. They demonstrate that specific levels of persistence in consumption growth can be

predicted by the same degree of persistence in the price-dividend ratio. Fosten (2019) decomposes

emissions and economic cycles at different time scales and shows that emissions and economic

activity are significantly linked at frequencies of around one to three years, a relationship that

may not be discovered without an appropriate filter. Bandi et al. (2019) provide the theoretical

background of scale-specific predictability in multiresolution analysis and Donoho and Johnstone

(1994, 1995), Fan and Wang (2007), and Zhang et al. (2016) show that wavelet methodology can

successfully remove the microstructural noise in time series.

In the field of energy economics, the wavelet method has been widely used to analyze relationships

among energy and financial markets. A number of studies analyze the significant dependence of

stock prices on oil price shocks using wavelet methods. Jammazi and Aloui (2010) combine Markov-

switching VAR and wavelet method to analyze the effect of oil price shocks on stock market returns

in the United Kingdom (UK), France, and Japan. Using wavelet denoised series, they show the

significant impact of oil price shocks on the stock market returns. Hamdi et al. (2019) examine
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the relationship between oil price volatility and sectoral index returns in the Gulf Cooperation

Council countries using quantile regressions. They apply wavelet denoising with soft-thresholding

and discover an interdependence between oil price volatility and all sectors except energy and

transportation. Jiang and Yoon (2020) study the dependence between oil prices and the stock

market indices of oil-importing and oil-exporting countries across different time scales, uncovering

feedback relationships between oil prices and stock market indices at specific time scales. Liu (2017)

explores co-movements between oil price returns and stock returns in the UK’s oil and gas industries

and finds a significant long-term dependency that is not observed in the original series. Reboredo

et al. (2017) analyze co-movements and causal relationships between oil prices and renewable energy

stock prices at different time scales. Their empirical results indicate that the dependence between

oil and renewable energy stock prices is weak in the short run but strengthens as the time scale

increases.

Similar to the study of Reboredo et al. (2017), co-movement and causal relationships over

different time scales have been examined by combining the wavelet method and a VAR framework.

Tiwari et al. (2020) analyze causal relationships and spillover effects between fuel prices and

prices of food, industrial inputs, agricultural materials, and metals using wavelet coherence, phase-

differences, and spillover indices. Tiwari et al. (2018) examine co-movements and causal relationships

between oil prices and agricultural commodities using wavelet coherence, phase-differences, and

multiple cross-correlations. Based on wavelet coherence and a Toda–Yamamoto analysis, Pal and

Mitra (2017) show that the price of crude oil leads world food prices in a long-term time scale.

Yang (2019) examines causal relationship and connectedness between oil prices and economic policy

uncertainty using a DY spillover index. Combining a time-varying parameter VAR and stochastic

volatility models, Urom et al. (2021) employ time-varying correlation and a spillover index to

investigate dependence and connectedness among the crude oil market, global financial markets,

and regional green energy stock markets. Khalfaoui et al. (2015), Boubaker and Raza (2017), and

Yahya et al. (2021) analyze the scale-wise features of mean and volatility spillovers among oil and

equity markets by combining VAR and various GARCH-type models. In addition, Mensi et al.
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(2017) and Yahya et al. (2019) use wavelet-based copula frameworks and Storhas et al. (2020)

propose a symbolic wavelet transfer entropy to study lead-lag relationships between the price of oil

and other variables.

3 Methodology

3.1 Continuous wavelets

A wavelet is created from a real-valued and square-integrable function called a mother wavelet ψ.

Location (ξ) and scale (ϑ) parameters are two key components of a wavelet; the location parameter

ξ determines its exact position and the scale parameter ϑ decides the wavelet’s stretch. A higher

scale value indicates a less compact wavelet, which translates into a lower frequency and vice versa.

Using location and scale parameters, a wavelet can be presented as

ψξ,ϑ(t) = 1√
ϑ
ψ

(
t− ξ
ϑ

)
, (2)

where 1√
ϑ
rescales the wavelet to have a unit variance. The Morel wavelet of Goupillaud et al.

(1984) is widely used in the field of economics and finance, as given by the following:

ψ(t) = π−
1
4 eiw0te−

1
2 t

2
, (3)

where eiw0t and e−
1
2 t

2 are a complex sinusoid and a Gaussian envelope with a variance of one,

respectively, and π− 1
4 is a normalization constant. We set ω0 = 6 following prior studies.

Let y(t) be a time series with a finite length. Based on Eq.(2), the continuous wavelet transformation

can be presented as a function of location and scale parameters, defined as

Wy(ξ, ϑ) = 1√
ϑ

∫ ∞
−∞

y(t)ψ?
(
t− ξ
ϑ

)
dt, (4)

where ? denotes complex conjugate. To measure the amplitude of specific time series, we calculate

the wavelet power spectrum |Wy(ξ, ϑ)|2, indicating the variance contribution at each time scale.
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Using continuous wavelet transformation, the covariance between two time series in the time-

frequency domain, namely the cross-wavelet transform, can be calculated as follows:

Wyx(ξ, ϑ) = Wy(ξ, ϑ)W ?
x (ξ, ϑ), (5)

where Wy(ξ, ϑ) and Wx(ξ, ϑ) are continuous wavelet transforms of y(t) and x(t), respectively.

Similar to the wavelet power spectrum, the cross-wavelet power spectrum assesses the covariance

contribution for a particular time and frequency. As suggested by Torrence and Compo (1998), the

squared wavelet coherence captures the intensity of the interdependence in the time and frequency

domain, given by

K2
yx(ξ, ϑ) = |κ

(
ϑ−1Wyx(ξ, ϑ)

)
|2

κ(ϑ−1|Wy(ξ, ϑ)|2)κ(ϑ−1|Wx(ξ, ϑ)|2) , (6)

where κ is a smoothing parameter. The squared wavelet coherence has a value between 0 and 1,

where a higher (lower) value denotes a stronger (weaker) dependence. Its statistical significance can

be obtained using a Monte Carlo method. However, the squared wavelet coherence has a limitation

in capturing the sign of correlation and the lead-lag relationship. The wavelet coherence phase

difference of Torrence and Compo (1998) can supplement this, defined as

φyx(ξ, ϑ) = tan−1
(
I{κ

(
ϑ−1Wyx(ξ, ϑ)

)
}

R{κ (ϑ−1Wyx(ξ, ϑ))}

)
, (7)

where I{·} and R{·} are the imaginary and real part operators, respectively. Phase relationships

between variables are often illustrated by an arrow; a right (left) arrow denotes in- (out-of) phase

and an upward (downward) arrow implies that the first (second) series leads another.
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3.2 Discrete wavelets

A time-series y(t) can be decomposed into several subseries based on time scales using a discrete

wavelet transform, presented as

y(t) =
∑
k

sJ,kϕJ,k(t) +
∑
k

dJ,kψJ,k(t) +
∑
k

dJ−1,kψJ−1,k(t) + · · ·+
∑
k

d1,kψ1,k(t), (8)

where ϕ is a father wavelet for the low frequency part of the time series and ψ is a mother wavelet

for the high frequency part. Wavelet transform coefficients, that is, sJ,k, dJ,k, . . . , d1,k, measure

how much a given wavelet function accounts for the total system. From Eq.(8), the J-th level

multiresolution representation of y(t) can be obtained as

y(t) = DJ(t) +DJ−1(t) + · · ·+D1(t) + SJ(t), (9)

where Dj(t) denotes the variation corresponding to the time scale 2j and SJ(t) contains a J-th

level smoothing component. In this study, we use maximum overlap discrete wavelet transform

with the multiresolution level J = 10 in consideration of the data length (1826 days). For daily

data, Dj roughly corresponds to a 2j-day scale shock. For example, Fig.1 visualizes D1, D4, and

D7 components of ERIX that correspond to 2- to 4-day, 16- to 32-day, and 128- to 256-day scale

shocks, respectively. We find that as the time scale increases, the wavelength and amplitude of the

wave increase, indicating a lower frequency variation.

[Fig.1 inserted about here]

3.3 Granger causality, impulse response, and connectedness

A VAR model of order p can be presented as follows (by omitting the constant):

yt = Π1yt−1 + Π2yt−2 + · · ·+ Πpyt−p + εvt , (10)
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where y is a k × 1 vector of endogenous variables and Π is a k × k coefficient matrix. To examine

the system, we perform a Granger causality test, impulse response analysis, and forecasting error

variance decomposition using the VAR estimates. First, we test the null hypothesis that the variable

j does not cause i, expressed as Hg
0 : Π1(i, j) = Π2(i, j) = · · · = Πp(i, j) = 0, where Π(i, j) denotes

the (i, j) element of the matrix Π. Second, we investigate the response of variable i when a shock

to variable j is observed. If the invertability condition is satisfied, the vector moving average

representation (i.e., VMA(∞)) can be obtained from Eq.(10) as follows:

yt =
∞∑
q=0

Ψqε
v
t−q,Ψq = Ω1Ψq−1 + Ω2Ψq−2 + · · ·+ ΩpΨq−p,Ψ0 = Ik, (11)

where Ik is a k × k identity matrix. In the vector moving average representation, endogenous

variables are expressed in terms of εvt . Accordingly, Ψl(i, j) captures the response of variable i

when εvj increased by one unit with time lag l. Finally, we measure the spillover effect among

endogenous variables. DY propose a connectedness measure based on the generalized forecasting

error variance decomposition of Koop et al. (1996) and Pesaran and Shin (1998). The contribution

of variable j to the H-step ahead forecast error variance of variable i is given by

ΞHij =
σ−1
jj

∑H−1
h=0 (e′

iΨhΣεej)2∑H−1
h=0 (e′

iΨhΣεΨ′
hei)

, (12)

where ei is a selection vector where the i-th element equals one and zero elsewhere, Σε and σjj

are the covariance matrix of εv and its j-th diagonal element, respectively. DY define the pairwise

direction connectedness as ΞHij and net pairwise directional connectedness as ΞHij−ΞHji . Furthermore,

they calculate the total directional connectedness from others to i (ΞHi←• = ∑k
q=1,q 6=i ΞHiq ), total

directional connectedness from i to others (ΞHi→• = ∑k
q=1,q 6=i ΞHqi), and net total directional connecteness

from i (ΞHi→• − ΞHi←•). The directional connectedness allows us to determine whether a variable is

a transmitter or a receiver of spillover in the system.
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4 Data

To examine the dynamics among coal, carbon, and renewable energy stock prices, we focus on

the European markets during EU ETS Phase III.4 The variables considered are the prices of coal,

carbon, and the renewable energy stock index as well as control variables including the prices of

electricity, crude oil, a stock market index, the risk-free rate, and weather conditions. The dynamics

among the prices of coal, carbon, and renewable energy stocks are strongly influenced by exogenous

factors such as macroeconomic activities and weather conditions (Bel and Joseph, 2015; Chevallier,

2009; Declercq et al., 2011). For example, electricity is the end product of electricity-generating

firms, and therefore, when growing demand for electricity raises the price, firms would generate

more electricity, leading to an increase in demand for both fuel and allowances. Here, the prices of

electricity, fuels, and allowances are positively related in the short run. Our control variables not

only capture economic fluctuations but also the overall movements of fossil fuel prices and stock

markets which would affect the demand for electricity and allowances.

We collect daily data for the period from January 1, 2013, to December 31, 2019 (1,826 days)

from the following sources. For the price of carbon, we primarily use EUA futures data owing

to the trading volume and continuity of prices of those contracts (Chevallier, 2009, 2011; Cretí

and Joëts, 2017). We obtain EUA futures prices from the Intercontinental Exchange where those

contracts have actively traded since the beginning of the EU ETS. To represent the stock prices

of European renewable energy firms, we use the ERIX, which consists of Europe’s representative

clean energy generation companies. Coal prices (COAL) are CIR ARA forward prices, crude oil

prices (OIL) are Intercontinental Brent crude oil futures, and electricity prices (ELEC) are German

baseload electricity forward prices. We note that changes in coal prices affect coal-firing through

the dark spread; therefore, it is the dark spread rather than the price of coal itself that drives

fuel substitution. The dark spread (DSPR) is calculated following Eq.(1), using η = 0.143 and
4The analysis for Phase III (2013-2020) provides a better understanding of the overall relationships involving EUA.

The EU ETS suffered from an oversupply problem during Phase I and II. Having learned from those trial periods,
the EU ETS introduced various stabilizing policies in Phase III. Moreover, auctioning became the primary rule of
allocation, especially for the power sector. Therefore, the determinants of demand for EUA are expected to have
more influence on the price of EUA in Phase III.
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Ec = 0.350 by referring to the International Energy Agency. For robustness, we report results for

both coal prices and the DSPR. Instead of using the switching price, we use the price of coal and the

DSPR because the switching price was found to be not useful in improving the explanatory power

of the model and it causes a full rank problem (Batten et al., 2021). For the stock market index and

the risk-free rate, we use the Euro STOXX 50 index (STOXX) and an average of 10-year government

bond rates in the Euro area. Finally, weather data are defined as temperatures in major German

cities that are due to the country’s geographical location and contribute to Europe’s electricity

sector (Batten et al., 2021). We calculate the average temperature and as well as dummy variables

for extremely high and low temperatures to capture unexpected temperature changes (Alberola

et al., 2008; Keppler and Mansanet-Bataller, 2010; Mansanet-Bataller et al., 2007).

Table 1 shows descriptive statistics for the raw data (Panel A) and daily returns (Panel B).

The average EUA futures price was €10.02 during the sample period, which is significantly lower

than the price of €24.48 at the end of the period, on December 31, 2019. The average daily return

of ERIX (0.10%) is three times greater than that of the STOXX 50 (0.03%), which indicates that

renewable energy stock prices have increased rapidly, possibly because of government and private

sector policies that reflect growing environmental concerns. Compared to these stock returns, EUA

prices generated a higher average return over the period (0.14%) but a lower median (0.00%) and

higher standard deviation (2.80%). This indicates that the EUA return was more volatile than

stock returns over the sample period. The row labeled “Corr. with ERIX” (“Corr. with EUA”)

shows the Pearson correlation coefficient between ERIX (EUA) and each variable. In line with our

expectations, we find that ERIX and EUA prices are positively correlated and that the DSPR is

positively correlated with both ERIX and the price of EUA. The price of coal has small positive

correlations with both ERIX and the price of EUA. This may indicate that positive short-run

relationships driven by the demand for electricity are more dominant than negative relationships

driven by the ETS. Fig.2 illustrates the evolution in ERIX, EUA and coal prices, and the DSPR

over the sample period. Both ERIX and the EUA price appear to be upward-trending, which

indicate the stabilization of the EU ETS and growth in RES. Visual inspection of Fig.2 also shows
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that ERIX often depends more on the EUA price than the coal price. For example, in 2013, 2015,

and early 2019, the coal price collapses but ERIX does not decline and even increases along with

the EUA prices. During the third quarter of 2019, the coal price increases but both ERIX and

the EUA price decrease. Nonetheless, these findings provide only weak support for the negative

relationships between coal and renewable energy stock prices. Thus, we conclude that there is a

positive relationship between ERIX and EUA prices whereas the negative relationship between the

coal price and ERIX (or between the coal and EUA prices) is not apparent in the original data.

[Table 1 inserted about here]

[Fig.2 inserted about here]

5 Empirical results

5.1 Continuous wavelet analysis

Fig.3 displays the results from the continuous wavelet power spectrum of ERIX, EUA prices,

coal prices, and the DSPR, where the horizontal and vertical axes indicate time and frequency,

respectively. The warmer color denotes a higher wavelet power and the thick black contour indicates

significance at the 5% level. The thin black contour designates the cone of influence and the shaded

area signifies the area where the results might be distorted because of the edge effect. The time

scale decompositions in Fig.3 indicate that wavelet power is generally greater at intermediate and

lower frequencies than at higher frequencies. For example, ERIX and EUA price respond strongly

to shocks on scales greater than 32 days whereas coal prices and DSPR react to shocks on scales

greater than 16 days. We observe that the power significantly increased for EUA prices after mid-

2018, implying that price variations in EUA have recently increased. In addition, there is high

power in coal prices at scales up to one year, indicating seasonal and long-term trend components.

[Fig.3 inserted about here]
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Fig.4 presents wavelet coherence and phase-differences for four pairs of variables: ERIX and

EUA prices, ERIX and coal prices, EUA and coal prices, and EUA prices and the DSPR. The

arrow represents relative phase relationships; the right (left) arrow signifies in (out-of) phase and

the up (down) arrow indicates that the first (second) series leads another series. Information on

the wavelet coherence and phase-differences support our predictions. Specifically, we find that the

EUA price leads ERIX and that they are in phase (↘) with significant wavelet coherence from 2015

to 2017 over 32- to 128-day scales. The price of coal also leads ERIX and that they had a negative

relationship (↙) during 2018 over 50- to 100-day scales and from 2016 to 2017 over 128- to 256-

day scales with significant wavelet coherence. EUA and coal prices, which might have a negative

relationship, are also generally in anti-phase. However, in some time periods and frequencies, we

observe positive relationships among coal prices, EUA prices, and ERIX. For example, ERIX and

coal prices are in phase during the last quarter of 2017 over 32- to 64-day scales. EUA and coal

prices are in phase during the last quarter of 2016 over 16- to 64-day scales and in the last quarter

of 2018 over 64-to 100-day scales. Fig.2 also indicates that their original time series also move

together during those periods. This may be related to the co-movement of coal prices, EUA prices,

and ERIX driven by a demand shock for electricity. Finally, for EUA prices and the DSPR, we

find that although the lead-lag relationship is unclear, the two are in phase with significant wavelet

coherence during 2018 and in the first quarter of 2019 over 16- to 128-day scales.

[Fig.4 inserted about here]

5.2 Regression analysis for wavelet-adjusted series

The empirical results of the continuous wavelet analysis show that ERIX, carbon prices, and coal

prices have significant relationships over intermediate and long-term time scales that reveal the

dynamics of the energy transition that is occurring in the power sector. This implies there is

significant information that could be extracted at specific levels of persistence and that other

components (e.g., noise and seasonal components) can obscure the actual nature of these relationships.

In this regard, the discrete wavelet transform can be seen as a way to reconstruct time series with
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specific time scales of interest (Hamdi et al., 2019; Jammazi and Aloui, 2010; Ortu et al., 2013; Pal

and Mitra, 2017). In particular, we decompose the time series of ERIX, EUA prices, coal prices,

and the DSPR as well as for the price of Brent crude oil, the STOXX 50 index, and electricity prices

into different time scales using discrete wavelets. Subsequently, for each variable we remove the

variation in time scales of less than 16 days (representing the noise component) and greater than

256 days (representing seasonal and trend components) and calculate the sum of the variations

in the remaining time scales ranging from 16 to 256 days. These reconstructed series, referred to

as wavelet-adjusted series, emphasize intermediate and long-run variations by reducing the noise,

seasonal, and trend components.5 Table 2 shows descriptive statistics for and Fig.5 displays plots

of these wavelet-adjusted series. The pairwise correlation coefficients among wavelet-adjusted series

as shown in Table 2 are in line with our predictions. For instance, ERIX and EUA have a high

positive correlation of 0.82. The wavelet-adjusted EUA and COAL are negatively correlated (-0.18),

which is in contrast to the positive correlation (0.09) observed in their original time series. The

wavelet-adjusted ERIX and COAL are also negatively correlated (-0.35), in contrast to the positive

correlation (0.12) seen in their original series. Tests for stationarity, including the augmented

Dickey–Fuller unit root (Dickey and Fuller, 1979; ADF), Phillips-Perron (Phillips and Perron,

1988; PP), and Kwiatkowski–Phillips–Schmidt–Shin (Kwiatkowski et al., 1992; KPSS) tests, are

also presented in Table 2. The results of all three tests indicate that all wavelet-adjusted series are

stationary.

[Table 2 inserted about here]

[Fig.5 inserted about here]

Using the wavelet-adjusted series, we perform three regressions that measure the dependence

of carbon prices on fuel prices (R1), ERIX on the price of carbon (R2), and ERIX on fuel prices

(R3) as follows:

(R1) EUAt+1 = α1 + β1,FFuelt + β1,cXt + ε1,t,
5Hereafter, ERIX, EUA, COAL, DSPR, BRENT, STOXX, and ELEC represent their corresponding wavelet-

adjusted series.
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(R2) ERIXt+1 = α2 + β2,EEUAt + β2,cXt + ε2,t,

(R3) ERIXt+1 = α3 + β3,FFuelt + β3,cXt + ε3,t,

where Fuelt represents fuel prices (i.e., COAL or DSPR) and Xt represents the set of control

variables including wavelet-adjusted BRENT, STOXX, and ELEC as well as the 10-year government

bond yield, average temperature, and dummy variables for extreme temperatures. Note that we

collect one out of every eight data points (a total of 228 out of 1,826 data points) to mitigate the

serial correlation of the wavelet-adjusted series. The variables are standardized to have a mean

zero and a standard deviation of one.

Table 3 shows the results of the regression analysis with EUA as the dependent variable and

fuel prices (represented by either COAL or DSPR) as the key independent variable (R1). The row

labeled “COAL” shows the results of the regression using COAL, and the row labeled “DSPR”

presents the regression using DSPR. The OLS estimation results presented in the first column

indicate that increases in carbon-intensive fuel costs decrease the allowance price; COAL has a

negative coefficient of -0.062 (t-stat = -2.64) and DSPR has a positive coefficient of 0.127 (t-stat

= 3.08), indicating that the negative effect of coal price shocks on the price of EUA is statistically

and economically significant. This illustrates that when the coal price increases but the price of

electricity does not also go up, the DSPR decreases and the power company has less incentive to

generate “dirty” electricity; thus, the company will need fewer allowances, pushing the price of

those allowances down. Moreover, we consider the effect of regulation and policy changes on the

supply and demand for emission allowances. The EU ETS made announcements of the introduction

of MSR on April 1, 2015, and November 9, 2017, which significantly affected EUA prices (Bruninx

et al., 2020; Schäfer, 2019). In addition, various annual events such as the allocation and submission

of allowances play prominent roles in explaining EUA price variations. In Column 2 of Table 3, we

include two policy dummies and seven year dummies as explanatory variables and obtain consistent

results.

[Table 3 inserted about here]
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Serial correlation and endogeneity problems often cause biases in OLS estimates from time

series regressions. To account for these problems, we supplement our analyses with fully-modified

OLS (FMOLS; Phillips and Hansen, 1990), dynamic OLS (DOLS; Stock and Watson, 1993),

and canonical cointegrtating regressions (CCR; Park, 1992). These methods are commonly used

in energy economics to estimate the cointegration coefficients among variables and adjust for

asymptotic endogeneity and serial correlation (Apergis and Payne, 2014; Bilgili et al., 2016; Creti

et al., 2012; Dong et al., 2018). Columns 3, 4, and 5 of Table 3 present the FMOLS, CCR, and

DOLS estimations, respectively. In line with the OLS estimation results, an increase in the price

of coal has a negative effect, and an increase in DSPR has a positive effect on the EUA price.

The estimated coefficients in both cases are significant at the 1% level. Untabulated results show

that cointegration coefficients are not significant and the findings are consistent for various trend

specifications because wavelet-adjusted series are stationary, and thus, there are no cointegration

relationships among variables.

Table 4 presents regression estimates of the effect of EUA on ERIX (R2) and fuel prices on ERIX

(R3). The row labeled “EUA” stands for the results of regressions with ERIX as the dependent

variable and EUA as the key independent variable. “COAL” displays the impact of COAL on ERIX,

and “DSPR” demonstrates that of DSPR on ERIX. Focusing on EUA, the results in our study are

in line with prior studies that reveal a positive relationship between EUA prices and ERIX; the

OLS coefficient here is 0.249 with a t-statistic of 5.22. The regressions of ERIX on EUA have

larger R2 values and larger absolute coefficients than the other regression models, which indicates

the strong dependence of ERIX on the price of these allowances. We also find that ERIX reacts

negatively to coal price shocks. Focusing on the OLS estimates, COAL has a negative coefficient of

-0.049 (t-stat = -4.20) and DSPR has a positive coefficient of 0.157 (t-stat = 5.15). All estimated

coefficients are significant at the 1% level. This is consistent with our prediction that when the

price of coal increases (decreases), the negative (positive) effect of a lower (higher) EUA price is

greater than the positive (negative) effect of energy substitution.

[Table 4 inserted about here]
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5.3 VAR analysis for wavelet-adjusted series

The regression analyses provide robust results regarding the impact of coal prices on carbon prices

and ERIX. Here, we further analyze the dynamic relationships among the prices of coal, carbon,

and renewable energy stocks using VAR models. A VAR model allows us to address the potential

endogeneity problem and validate the robustness of the previous results. We estimate two trivariate

VAR models; one comprising ERIX, EUA, and COAL and the other using ERIX, EUA, and DSPR.

We apply the Schwarz criterion to determine the optimal lag length, and the chosen lag length is

8 for both VAR models. Both VAR models can be considered stationary because we use the

stationary wavelet-adjusted series.

In the first step, we illustrate the spillover dynamics based on the DY connectedness measure

described in Section 3.3. Table 5 shows connectedness matrix among ERIX, EUA, and COAL

(Panel A) and ERIX, EUA, and DSPR (Panel B). The table presents the DY spillover from the

column variable to the row variable, while the diagonal values denote their own contributions. The

column labeled “From” stands for total spillover from the other variables to each variable and the

row labeled “To” denotes total spillover from each variable to the other variables. We observe

that the total connectedness values in the VAR systems are 25.14% for COAL and 22.60% for

DSPR, implying moderate spillover effects among these markets. The pairwise connectedness from

EUA to ERIX is greater than for other pairs, which indicates that EUA shocks largely account

for variations in ERIX. The net pairwise directional connectedness (ΞHij − ΞHji ) and the net total

directional connecteness to others (ΞHi→• − ΞHi←•) are also calculated to examine the net direction

of spillovers. Focusing on the VAR model for ERIX, EUA, and COAL (Panel A), we discover

positive net pairwise connectednesses from COAL to EUA (1.26%), EUA to ERIX (0.80%), and

COAL to ERIX (0.31%). Accordingly, the net total connectednesses from ERIX (-1.11%) and

EUA (-0.46%) to the system are negative while the net total connectedness from COAL (1.57%) is

positive, meaning that COAL is a net transmitter of spillover and EUA and ERIX are net receivers

in the system. In addition, untabulated Granger causality test results indicate that COAL Granger-

causes both EUA and ERIX, while EUA Granger-causes ERIX. These findings provide evidence
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that coal price shocks are transmitted to ERIX through EUA prices. By contrast, in Panel (b), the

variance contributions of DSPR to EUA and ERIX are smaller than that of COAL. The net total

connectednesses for EUA (1.11%) and ERIX (-1.05%) imply that they are a net transmitter and

receiver, respectively, while the net effect of DSPR (-0.06%) is ambiguous. This may be due to the

simultaneous relationship between EUA and DSPR, which is driven by the price of electricity.

[Table 5 inserted about here]

Finally, using impulse response analyses we examine the impact of unexpected shocks in one

variable on the other variables over time. The impulse response functions are shown in Table 6 and

Fig.6. The first three columns in Table 6 and in Panel (a) of Fig.6 present the results from the

VAR model for ERIX, EUA, and COAL. Consistent with previous results, we find that (i) EUA

reacts negatively to a shock to COAL, (ii) ERIX reacts positively to a shock to EUA, and finally,

(iii) ERIX reacts negatively to a shock to COAL. The impulse response functions are statistically

significant over some periods, and the direction of the impact is consistent with our predictions.

The last three columns in Table 6 and Panel (b) of Fig.6 show the results of the VAR model

using ERIX, EUA, and DSPR. We observe that EUA responds positively to a shock to DSPR, and

ERIX responds positively to a shock to EUA; these impulse response functions are also significant

over some periods. While a shock to DSPR causes a positive impact on ERIX, the effect is not

significant. This may imply that a change in the price of electricity partially offsets the negative

effect of a coal price shock to renewable energy stock prices.

[Table 6 inserted about here]

[Fig.6 inserted about here]

6 Conclusions

Higher fossil fuel prices are often seen as a force to accelerate technological developments of RES by

strengthening the incentives to use alternative energy sources. However, the price of carbon should
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be considered carefully when analyzing the dynamics of the relationship between fuel prices and the

stock prices of renewable energy companies involved in an emission trading system. In particular,

when the price of carbon-intensive fuel increases (decreases), power plants use less (more) of that

carbon-intensive fuel, which reduces (increases) the demand for emission allowances, which in turn

puts downward (upward) pressure on the price of carbon. Given that the renewable energy stock

prices are positively correlated with the price of carbon, a lower (higher) carbon price driven by

a higher (lower) price for carbon-intensive fuel may cause the renewable energy stock prices to

decrease (increase). If the price of carbon plays a more important role than the price of fuel in

the variation of renewable energy stock prices, we observe a (perhaps counterintuitive) negative

relationship between the price of carbon-intensive fuel and the prices of renewable energy stocks.

In this study, we investigate the relationship between ERIX, a representative renewable energy

sector index, and the price of coal, incorporating the influence of the price of carbon in the

EU ETS. Our empirical analysis, which uses various approaches based on wavelets, consistently

indicates that changes in the price of coal negatively affect ERIX. Specifically, continuous wavelets

provide information on dynamic correlations and lead-lag relationships for different time scales over

time. Wavelet coherence and phase relationships show that coal and carbon prices are negatively

correlated, the price of carbon and ERIX are positively correlated, and the price of coal and

ERIX are negatively correlated over specific time scales and frequencies. Our results also indicate

that the wavelet power spectrum and wavelet coherence are more significant at intermediate and

lower frequencies than at higher frequencies. To focus on specific levels of persistence by reducing

noise, trend, and seasonal components, we apply a discrete wavelet transform and obtain wavelet-

adjusted series. Next, we perform regression and VAR analyses using the wavelet-adjusted series.

The regression results imply that the price of coal has a negative effect on the price of carbon,

the price of carbon has a positive effect on the ERIX, and the price of coal has a negative effect

on ERIX. These results are statistically and economically significant, and robust to controls for

exogenous shocks. From the VAR estimates, we derive the DY connectedness measure and impulse

response functions. The results provide robust evidence of the negative response of carbon prices to
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coal price shocks, the positive response of the ERIX to carbon price shocks, and finally, a negative

response of ERIX to coal price shocks. Our findings have implications for both researchers and

policymakers who wish to examine the effect of ETS in promoting the development of RES.
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Figure 1. Plot of wavelet decomposed series for ERIX

Notes. The subfigures stand for the discrete wavelet coefficient correspond to time scales: D1 (2-4 days),
D4 (16-32 days), and D7 (128-256 days), respectively.
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Figure 2. Daily ERIX, EUA price, coal price, and DSPR

Notes. The variables are standardized to mean zero and variance one for ease of comparison.
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Figure 3. Wavelet power spectrum of ERIX, EUA, COAL, and DSPR

Notes. The thick black contour indicates significance at the 5% level. The thin black contour designates
the cone of influence and the shaded area denotes the area where the results might be distorted because of
the edge effect. Warmer colors indicate higher power.
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Figure 4. Wavelet coherence and phase plots

Notes. The thick black contour indicates significance at the 5% level. The thin black contour designates
the cone of influence and the shaded area denotes the area where the results might be distorted because of
the edge effect. The arrow represents the relative phase relationships; the right (left) arrow signifies in
(out-of) phase, and the up (down) arrow implies the first (second) series leads another series. Warmer
colors indicate a higher coherence level.
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Figure 5. Wavelet-adjusted ERIX, EUA, COAL, and DSPR

Notes. Wavelet-adjusted series are reconstructed using discrete wavelet coefficients correspond to time
scales: D4 (16-32 days), D5 (32-64 days), D6 (64-128 days), and D7 (128-256 days).
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Notes. Subfigures in Panel (a) illustrate the impulse response functions of the VAR model consisting of
ERIX, EUA, and COAL. Subfigures in Panel (b) stand for that of ERIX, EUA, and DSPR. Dashed lines
denote 95% confidence intervals.
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Table 1. Descriptive statistics of original series

Variable ERIX EUA COAL DSPR BRENT STOXX ELEC
Panel (a) Raw data

Mean 884.40 10.02 61.26 12.27 71.06 3242.88 36.59
Median 892.80 6.74 58.40 10.97 63.67 3264.32 35.35
Max 1515.31 29.78 88.87 31.96 118.90 3828.78 63.70
Min 303.59 2.72 37.74 1.52 27.88 2511.83 21.10

Std.dev 267.92 7.33 12.08 5.97 23.76 287.49 8.20
Skew -0.02 1.30 0.34 0.91 0.59 -0.34 1.09
Kurt -0.35 0.14 -0.69 0.49 -0.97 -0.69 1.44

Corr. with ERIX - 0.77 0.12 0.26 -0.56 0.68 0.27
Corr. with EUA - - 0.09 0.70 -0.16 0.40 0.58

Panel (b) Return data
Mean 0.10 0.14 -0.02 0.22 -0.02 0.03 0.02
Median 0.10 0.00 -0.04 0.02 0.00 0.03 0.00
Max 3.00 7.25 3.60 19.11 4.50 2.33 5.21
Min -2.90 -6.84 -3.26 -15.83 -4.56 -2.40 -4.89

Std.dev 1.23 2.80 1.31 6.28 1.78 0.96 1.87
Skew -0.09 0.04 0.22 0.35 -0.05 -0.10 0.15
Kurt 0.23 0.52 0.92 1.50 0.61 0.40 1.07

Corr. with ERIX - 0.12 0.09 -0.01 0.17 0.67 0.05
Corr. with EUA - - 0.07 0.16 0.18 0.11 0.25
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Table 2. Descriptive statistics and stationary test results of wavelet-adjusted series

Variable ERIX EUA COAL DSPR BRENT STOXX ELEC
Mean 1.20 0.02 0.00 0.00 -0.04 0.90 0.01
Median 1.37 0.01 0.01 0.11 0.33 4.36 0.00
Max 277.31 5.25 12.26 6.12 19.46 418.24 7.71
Min -334.84 -5.85 -10.42 -6.00 -17.62 -357.22 -5.65

Std.dev 90.53 1.69 3.87 1.91 6.68 125.01 2.19
Skew -0.45 -0.04 0.02 -0.11 0.14 -0.01 0.20
Kurt 3.53 2.95 0.31 0.39 0.34 0.44 0.94

Corr. with ERIX - 0.82 -0.35 0.04 -0.53 0.76 -0.20
Corr. with EUA - - -0.18 0.26 -0.59 0.54 0.04

ADF -4.24∗∗∗ -5.55∗∗∗ -5.81∗∗∗ -7.40∗∗∗ -7.26∗∗∗ -5.43∗∗∗ -6.25∗∗∗
PP -4.92∗∗∗ -5.28∗∗∗ -5.23∗∗∗ -8.59∗∗∗ -4.83∗∗∗ -5.48∗∗∗ -7.40∗∗∗

KPSS 0.018 0.019 0.019 0.023 0.017 0.018 0.021

Notes. Wavelet-adjusted series are reconstructed using discrete wavelet coefficients correspond to time
scales: D4 (16-32 days), D5 (32-64 days), D6 (64-128 days), and D7 (128-256 days). ∗∗∗ denotes
significance at the 1% level. Rows labeled “ADF,” “PP,” and “KPSS” denote ADF, PP, and KPSS test
results, respectively.
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Table 3. The results of regression analysis for EUA

(i) (ii) (iii) (iv) (v)
OLS OLS FMOLS CCR DOLS

COAL Coef.
-0.062∗∗∗ -0.072∗∗∗ -0.077∗∗∗ -0.076∗∗∗ -0.102∗∗∗
(-2.64) (-2.85) (-2.91) (-2.66) (-2.94)

Adj-R2 0.528 0.574 0.557 0.556 0.722

DSPR Coef. 0.127∗∗ 0.111∗∗∗ 0.151∗∗∗ 0.161∗∗∗ 0.260∗∗∗
(3.08) (3.08) (3.08) (2.79) (3.58)

Adj-R2 0.547 0.585 0.568 0.567 0.742

Number of obs. 228 228 228 228 228
Control variables O O O O O
Policy dummy X O O O O
Year dummy X O X X X

Long-run relationships X X O O O

Notes. The table represents the estimated coefficient (t-statistic in parentheses) and adjusted R2 from each
regression. ∗∗∗ and ∗∗ denote significance at the 1% and 5% levels, respectively.
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Table 4. The results of regression analysis for ERIX

(i) (ii) (iii) (iv) (v)
OLS OLS FMOLS CCR DOLS

EUA Coef.
0.249∗∗∗ 0.247∗∗∗ 0.264∗∗∗ 0.267∗∗∗ 0.305∗∗∗
(5.22) (4.80) (6.71) (6.33) (6.78)

Adj-R2 0.682 0.691 0.680 0.679 0.907

COAL Coef. -0.049∗∗∗ -0.050∗∗∗ -0.058∗∗∗ -0.056∗∗∗ -0.057∗∗∗
(-4.20) (-3.72) (-3.61) (-3.22) (-2.92)

Adj-R2 0.637 0.650 0.641 0.640 0.854

DSPR Coef. 0.157∗∗∗ 0.145∗∗∗ 0.177∗∗∗ 0.180∗∗∗ 0.201∗∗∗
(5.15) (4.59) (4.37) (3.80) (3.58)

Adj-R2 0.647 0.656 0.646 0.644 0.859

Number of obs. 228 228 228 228 228
Control variables O O O O O
Policy dummy X O O O O
Year dummy X O X X X

Long-run relationships X X O O O

Notes. The table represents the estimated coefficient (t-statistic in parentheses) and adjusted R2 from each
regression. ∗∗∗ denotes significance at the 1% level.
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Table 5. Connectedness table

Panel (a) COAL
ERIX EUA COAL From

ERIX 22.72 8.94 1.67 10.61
EUA 8.14 22.04 3.14 11.29
COAL 1.35 1.89 30.10 3.24
To 9.50 10.83 4.81 25.14

Panel (b) DSPR
ERIX EUA DSPR From

ERIX 22.97 10.15 0.21 10.36
EUA 9.01 22.84 1.48 10.49
DSPR 0.30 1.45 31.59 1.75
To 9.31 11.60 1.69 22.60

Notes. This table presents the DY spillover from the column variable to the row variable. The diagonal
values denote their own contribution. The column labeled “From” stands for total spillover from other
variables to each variable and the row labeled “To” denotes total spillover from each variable to other
variables.
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Table 6. Impulse response functions

lag COAL to
EUA

EUA to
ERIX

COAL to
ERIX

DSPR to
EUA

EUA to
ERIX

DSPR to
ERIX

1 0.00 -12.25 -1.14 0.10 -10.47 1.71
2 -0.02 -12.17 -3.04 0.22 -7.28 4.20
3 -0.05 -7.01 -5.23 0.30 2.30 7.84
4 -0.11 4.85 -7.68 0.24 17.49 6.92
5 -0.23 13.50 -11.01 0.14 28.30 5.41
6 -0.40 22.16 -15.58 0.18 37.71 4.86
7 -0.54 33.04 -18.82 0.36 48.46 6.17
8 -0.61 41.07 -20.26 0.54 55.68 6.65
9 -0.62 44.96 -20.74 0.64 57.95 6.01
10 -0.59 49.87 -21.05 0.69 59.89 5.63
11 -0.58 56.11 -20.70 0.70 60.83 6.65
12 -0.58 58.16 -19.56 0.70 57.36 8.63
13 -0.57 53.30 -18.08 0.71 48.71 10.60
14 -0.52 45.31 -16.67 0.74 38.73 11.52
15 -0.44 37.24 -15.50 0.74 29.60 11.72

Notes. Bold indicates significance at the 5% level.
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